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The linear stability of the axisymmetric flow past a fixed-shape spheroid with free-
slip boundary conditions is studied numerically to gain some insight into the path
instability of bubbles rising in liquids. Qualitatively, the results are similar to those
for a solid sphere. The m =1 mode gives rise to a double-threaded wake and proves
to be the most unstable mode, with a first regular bifurcation followed by a Hopf
bifurcation. The importance of the base-flow vorticity is highlighted by a stability
analysis of the axisymmetric base flow ‘frozen’ before reaching steady state. Setting
viscosity to zero in the perturbation equations results in a faster growth of the primary
instability, which indicates its root in inertial effects.

1. Introduction
A millimetre-diameter gas bubble rising in still water is often observed to follow a

zigzag or spiral path (see e.g. Clift, Grace & Weber 1978; Magnaudet & Eames 2000).
This phenomenon, referred to as path instability or ‘Leonardo’s paradox’ (Prosperetti
2004) in the literature, has attracted considerable attention in the last 50 years.

Saffman (1956) reported the onset of path instability at an equivalent radius
Req = 0.7 mm: a straight path for Req � 0.7 mm, a zigzag for 0.7 � Req � 1.0 mm,
and both zigzag and spiral for Req � 1.0 mm. The corresponding critical Reynolds
number defined in terms of the bubble equivalent diameter, terminal velocity and
liquid kinematic viscosity, was estimated to be Rec � 400. Hartunian & Sears (1957)
estimated a critical Reynolds number of Rec = 202, similar to that for the flow past
a solid sphere; the corresponding bubble radius was 0.63 mm. Aybers & Tapucu
(1969a , b) found a rectilinear path for Req � 0.67 mm, spiral for 0.67 � Req � 1 mm,
zigzag changing into spiral for 1 � Req � 1.8 mm, and zigzag for 1.8 � Req � 2.1 mm.
In an experimental study, Shew, Poncet & Pinton (2006) estimate a critical Reynolds
number around 720.

It is now believed that the numerical inconsistency among these results is related
to the purity of the water used in the experiments and, more specifically, to the
presence of surface-active substances. For a long time it was thought that such
impurities affected the results not only quantitatively, but also qualitatively. The
experiments of Duineveld (1995) with hyper-clean water, however, proved the latter
belief to be incorrect. While he found the onset of zigzagging at Req = 0.91 mm and
Rec = 662, the basic qualitative features of the phenomenon and its dependence on
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bubble radius were confirmed. A similar conclusion was reported by Lunde & Perkins
(1998) and Ellingsen & Risso (2001) who studied the path instability of bubbles with
Req � 1.2 mm, and by de Vries, Biesheuvel & van Wijngarden (2002) in purified water.

The focus on the precise nature of the boundary condition at the bubble surface
and the presumed difference between clean and contaminated water led workers
to believe that the physics of the instability was different from that observed with
solid objects, such as spheres. For a relatively large Reynolds number and a free-
slip surface, most of the flow field is irrotational except for a thin wake behind
the bubble. Therefore, Hartunian & Sears (1957), el Sawi (1974) and Benjamin
(1987) analysed path instability using the irrotational flow assumption. However,
the predicted non-zero drift angle from irrotational theory was not observed in
experiments. By considering the growth of linear three-dimensional perturbations,
Meiron (1989) concluded that no instability occurs in potential flow, which shows
that the vortical wake must play an essential role. This result supported the conjecture
of Saffman (1956), who was the first to hypothesize a coupling between the path and
wake instabilities.

Another feature of bubbles as opposed to solid objects debated in the literature is
deformability and possible shape oscillations. On the basis of inviscid theory, el Sawi
(1974) found that, beyond a Weber number of about 3.3, no steady solution was
possible. From the proximity of this value to that reported by Hartunian & Sears
(1957) for the onset of path instability, he hypothesized a possible role of shape
oscillations. Duineveld (1995) (see also Magnaudet & Eames 2000) disproved this
notion, although shape oscillations do exist for larger bubbles as shown by Lunde &
Perkins (1998).

Progress in the understanding of the wake behind solid spheres, on the one hand,
and behind a rising bubble, on the other, gradually brought to light the existence of
substantial similarities between the two situations in spite of the different mechanism
of surface vorticity generation (see e.g. Batchelor 1967; Leal 1989).

Natarajan & Acrivos (1993) carried out a linear stability analysis of the steady
axisymmetric flow past a fixed sphere and found a first loss of stability via a regular
bifurcation to a steady flow at Re � 210. This flow is characterized by the existence of
a plane of symmetry and by a two-threaded wake consisting of streamwise vorticity
of opposite signs. The existence of this wake, first observed by Magarvey & Bishop
(1961), is sufficient to explain the onset of a ‘lift’ force at right angles to the incoming
steady flow. With increasing Reynolds number, Natarajan & Acrivos found a second
eigenvalue becoming unstable via a Hopf bifurcation at Re= 277.5. A similar sequence
was found in the fully nonlinear three-dimensional calculations of Johnson & Patel
(1999), Tomboulides & Orszag (2000) and Ghidersa & Dus̆ek (2000). The latter
authors argued that, for Reynolds numbers not too far above the second bifurcation
point, the essential physics of the process is captured by the first two unstable
modes. This basic picture of wake transition was confirmed in the further calculations
of Thompson, Leweke & Provansal (2001) and in the experiments of Ormières &
Provansal (1999), Schouveiler & Provansal (2002), Jenny, Dus̆ek & Bouchet (2004),
and Veldhuis et al. (2005).

A parallel experimental effort on rising bubbles revealed a similar pattern. Lunde
& Perkins (1997) and Brücker (1999) found the typical two-threaded wake and strong
qualitative similarities with solid spheres. The study of de Vries et al. (2002) in highly
purified water proved that these results were robust and not affected by water quality.
Direct numerical simulations of axisymmetric flow confirmed the existence of a steady
attached eddy behind a rectilinearly rising bubble with both a fixed (see Blanco &
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Magnaudet 1995; Takagi, Matsumoto & Huang 1997) and a free (see Ryskin &
Leal 1984) shape in a certain range of Reynolds numbers. The simulations of the
free rise of a fixed-shape spheroid with free-slip boundary conditions by Mougin &
Magnaudet (2002) exhibited the same qualitative and quantitative features of a real
bubble (Ellingsen & Risso 2001): an initially rectilinear rise, followed by a bending
of the trajectory, the onset of zigzag, and eventually a spiral path. The presence of a
two-threaded wake was also unmistakable.

Although the work carried out to date has shed a significant light on the mechanics
of path instability, the root physical cause of this intriguing phenomenon has not been
revealed. In the present paper, we carry out a linear stability study of the axisymmetric
flow past a free-slip spheroid with a fixed shape, as assumed by Magnaudet & Mougin
(2007). This approach enables us to investigate the role of several features of the flow
(vorticity distribution in the wake, vorticity of the perturbation) which cannot be
analysed in a fully three-dimensional study.

The relevance of the stability properties of a fixed body vs. those of a body free
to move is somewhat unclear. Both Magnaudet & Mougin (2007) and we find that
the first instability is supercritical for a fixed spheroid.† On the other hand, as noted
by Goldburg & Florsheim (1966), some quantitative features such as the Strouhal
number of the flow past a solid body seem not to be much affected by the constraint.
Furthermore, qualitative features of the wake, such as the presence of hairpin vortices,
appear to be remarkably robust as revealed, for example, by a comparison of the data
of Achenbach (1974) and Schouveiler & Provansal (2002) with, for example, those of
Veldhuis et al. (2005).

2. Problem statement
We study the flow past a stationary spheroidal bubble with a prescribed fixed shape

and free-slip boundary conditions.
We write the velocity and pressure fields as U + u, P +p, where U , P are the fields

of the base axisymmetric flow and u, p the perturbation. The base flow is governed
by the standard Navier–Stokes equations which we write in non-dimensional form as

∂U
∂t

+ ∇ · (UU) + ∇P + 2Re−1∇ × (∇ × U) = 0, ∇ · U = 0. (2.1)

The non-dimensionalization is in terms of the equivalent spherical radius of the
bubble, Req , and the (constant) velocity of the incident flow U∞, so that the Reynolds
number is defined as Re =2ReqU∞/ν, with ν the kinematic viscosity of the liquid. The
perturbation fields satisfy the linearized form of the Navier–Stokes equations:

∂u
∂t

+ ∇ · (Uu + uU) + ∇p + 2Re−1∇ × (∇ × u) = 0, ∇ · u = 0. (2.2)

At the bubble surface we impose the kinematic condition of vanishing normal
velocity and the dynamic condition of vanishing tangential stress. The normal stress
condition cannot be satisfied owing to the adoption of a prescribed fixed shape. The
calculation is initialized by placing the bubble in a uniform incident flow.

† In an earlier paper, Mougin & Magnaudet (2002) mentioned the possibility of a subcritical
bifurcation for a free spheroid; Professor Magnaudet has kindly informed us that a more recent
analysis of those data suggests that the bifurcation remains supercitical.
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Figure 1. The computational domain and boundary-fitted grid. (a) Overview. (b) Detail.

2.1. Base flow

Following Dandy & Leal (1986) and Blanco & Magnaudet (1995), in the meridian
plane, we use boundary fitted coordinates (ξ, η) generated as described in the next
section. The coordinate ξ varies in the direction parallel to the bubble surface, while
η is normal to it (see figure 1). The bubble surface corresponds to η =1, the outer
boundary to η = 0, the part of the symmetry axis ahead of the bubble to ξ = 0, and
the part downstream to ξ = 1.

In these coordinates, the continuity equation for the base flow is

1

hξhηr

[
∂

∂ξ
(hηrUξ ) +

∂

∂η
(hξrUη)

]
= 0, (2.3a)

where r is the distance from the symmetry axis, hξ , hη are the scale factors in the ξ -
and η-direction, and U = (Uξ, Uη). The momentum equations are

∂Uξ

∂t
+

1

hξhηr

[
∂

∂ξ

(
hηrU

2
ξ

)
+

∂

∂η
(hξ rUξUη) + rUη

(
Uξ

∂hξ

∂η
− Uη

∂hη

∂ξ

)]

=
2Re−1

hηr

{
∂

∂η

[
r

hξhη

∂

∂η
(hξuξ )

]
− ∂

∂η

[
r

hξhη

∂

∂ξ
(hηuη)

]}
− 1

hξ

∂P

∂ξ
, (2.3b)
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∂
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∂hη
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− ∂

∂ξ

[
r

hξhη

∂
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− 1

hη

∂P

∂η
. (2.3c)

The zero tangential stress condition at the bubble surface η = 1 is

hξ

hη

∂

∂η

(
Uξ

hξ

)
+

hη

hξ

∂

∂ξ

(
Uη

hη

)
= 0, (2.4)

while the zero normal velocity condition is Uη = 0. On the symmetry axes ξ = 0 and
ξ = 1, the natural conditions are

Uξ = 0,
∂Uη

∂ξ
= 0. (2.5)

2.2. Perturbation

We expand the perturbation fields u, p in a Fourier series in the angular coordinate
ϕ around the axis of symmetry of the base flow as

u =

∞∑
−∞

um(ξ, η, t)eimϕ, p =

∞∑
−∞

pm(ξ, η, t)eimϕ. (2.6)

Since u and p are real-valued physical quantities, u−m = um and p−m = pm, where
the overbar denotes the complex conjugate. Upon substitution of (2.6) into (2.2) and
separation of the angular modes, the linearized equations in (ξ, η, ϕ) coordinates
become

∂(hηruξ )

∂ξ
+

∂(hξ ruη)

∂η
+ mhξhηuϕ = 0, (2.7a)

∂uξ

∂t
+

1

hξhηr
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(2.7b)
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where iuϕ has been replaced by uϕ . Since, owing to the linearization, different values
of m are not coupled, we have dropped the superscript m for simplicity.

As before, the kinematic boundary condition at the bubble surface η = 1 is simply
uη = 0. The tangential stress condition now gives rise to the two relations:

hξ

hη

∂

∂η

(
uξ

hξ

)
+

hη

hξ

∂

∂ξ

(
uη

hη

)
= 0, (2.8a)

1

hη

∂uϕ

∂η
− muη

r
− uϕ

hηr

∂r

∂η
= 0. (2.8b)

In order to treat properly the singularity on the axis of symmetry, we demand that

uξ = 0, uϕ = 0,
∂uη

∂ξ
= 0,

∂p

∂ξ
= 0, m even,

∂uξ

∂ξ
= 0,

∂uϕ

∂ξ
= 0, uη = 0, p = 0, m odd.

3. Numerical formulation
The computational domain (figure 1a) is bounded by the bubble surface, the

symmetry axis, and an outer boundary given as a Lamé curve (r/r1)
n + (z/z1)

n =1,
where r and z are cylindrical coordinates defined in the usual way, with z oriented
toward the incoming flow and r1 and z1 constants. The bubble is approximated as
a spheroid with a fixed shape and aspect ratio χ = b/a, with a and b the minor
and major semi-axes, respectively. A similar model has been introduced by Moore
(1965) and used by Blanco & Magnaudet (1995), Mougin & Magnaudet (2002) and
Magnaudet & Mougin (2007). The experimental data of Duineveld (1995) support
the approximation.

The computations are carried out on an orthogonal boundary-fitted grid (ξ, η)
generated by the technique of Duraiswami & Prosperetti (1992), which belongs to
the family of orthogonal mappings proposed by Ryskin & Leal (1983) and already
used, for example, in Blanco & Magnaudet (1995), Takagi et al. (1997), and Yang,
Prosperetti & Takagi (2003). Figure 1(a) is an example of the numerical grid, and
figure 1(b) shows a detail of the grid near the bubble surface.

The boundary conditions on the bubble surface and the symmetry axis were
specified in the previous section. For the base flow, on the outer boundary η = 0, we
prescribe the undisturbed velocity outside the wake and outflow conditions in the
neighbourhood of the wake. Specifically, we impose

inflow Uξ =
1

hξ

∂z

∂ξ
, Uη =

1

hη

∂z

∂η
, 1 � Nz � − 1√

2
,

outflow
∂Uξ

∂η
= 0,

∂2Uη

∂2η
= 0, − 1√

2
� Nz � −1,
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where Nz is the z-component of the outward unit normal to the computatonal
boundary. The outflow condition stipulates zero normal derivative for the tangential
velocity, (N · ∇)Uξ =0, with the parabolic approximation on the normal velocity
advocated by Magnaudet, Rivero & Fabre (1995). We also experimented with zero
tangential stress and zero normal velocity conditions in the region −1/

√
2< Nz < 1/

√
2

which proved suitable but required a much finer grid near the boundary.
For the perturbation we used similar conditions, with a zero perturbation velocity

in the range 1 � Nz � −1/
√

2 and the parabolic conditions on the remainder of the
boundary augmented by ∂uϕ/∂η =0.

3.1. Algorithm

Equations (2.3a–c), with the corresponding boundary conditions, are solved by finite
differences on a staggered grid. We use a pressure-increment projection method with
a semi-implicit discretization for the nonlinear terms (see Brown, Cortez & Minion
2001) which we have adapted to the present case of free-slip boundary conditions
(Yang & Prosperetti 2006). The standard Neumann conditions for the auxiliary
pressure variable are imposed on all the boundaries. The method has second-order
accuracy in space and time.

The perturbation equations (2.7a–d) are integrated in time with the same numerical
algorithm. It is important to use the conservative form of the equations, and the
discretization should be consistent with that used for the computation of the base
flow. By replacing uϕ by iuϕ it is possible to deal exclusively with real quantities.

For all the cases with Re = 660 we used the same constant (non-dimensional)
time step 0.012, which always satisfied the CFL stability constraint based on the
instantaneous maximum velocity. For each of the other cases, the time step was also
kept fixed for the entire simulation and adjusted to satisfy the CFL condition.

3.2. Initial conditions

The solution for the base flow is calculated starting from a uniform flow. The correct
boundary conditions develop automatically by the end of the first time step.

For the purposes of a stability analysis, one should make sure that the initial
conditions imposed on the perturbation contain the most unstable mode of the
linear system. Since there is no systematic way of achieving this objective, we have
experimented with two different classes of initial conditions. The first class consists
of uϕ = 0, while uη is given by

uη =

{
cos(2k1πξ ) sin(2k2πη), m even,

sin(2k1πξ ) sin(2k2πη), m odd,
(3.1)

with uξ calculated from the incompressibility constraint (2.7a). The second class uses
(3.1) for uη, but replaces uϕ = 0 with

uϕ =

{
sin(2k1πξ ) sin(2k2πη), m even,

cos(2k1πξ ) sin(2k2πη), m odd.
(3.2)

In these expressions, k1 and k2 are arbitrary non-negative integers. For both classes,
uξ , uη and uϕ vanish at the outer boundary and at the bubble surface.

We tested various combinations of the integers k1 and k2 in (3.1) and (3.2). The
results show that, after a short initial transient, the evolution of the perturbation is
insensitive to both the type of the initial perturbation and the specific values of k1

and k2; the results shown below have been obtained with k1 = k2 = 1 and uϕ = 0.
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Present Other investigators

Re = 200, χ = 1.0 0.203 0.200
Re = 600, χ = 1.0 0.072 0.072
Re = 664, χ = 1.75 0.104 0.102
Re = 660, χ = 2.0 0.126 0.120
Re = 200, Solid sphere 0.79 0.79/0.78

Table 1. Comparison of the drag coefficient calculated in the present study with results
from other investigators. The first three are from Blanco & Magnaudet (1995) for free-slip
conditions, the fourth one is from Magnaudet (personal communication), the last two are from
Johnson & Patel (1999) and Magnaudet & Mougin (2007).

3.3. Grid

The Lamé curve parameters for the outer boundary are chosen as n= 4, r1 = z1 = 80a.
On the basis of standard convergence tests, we settled on a discretization with 81
nodes in the ξ -direction (and, in particular, on the bubble surface) and 61 in the
η-direction. The maximum deviation from orthogonality was less than 0.05◦, and the
minimum radial grid spacing near the bubble surface was less than 0.0091a. Our
resulting grid is almost the same as that used by Blanco & Magnaudet (1995), whose
outer boundary was, however, rectangular and therefore introduced singularities in
the mapping near the corners. Similar domain sizes were also used in the study of
flow past a solid sphere by Natarajan & Acrivos (1993), who had a length of 30
radii downstream of the sphere, Johnson & Patel (1999), who placed the sphere at
the centre of a spherical domain with a radius of 30 sphere radii, and Tomboulides
& Orszag (2000) and Ghidersa & Dus̆ek (2000), whose downstream length was
50 radii.

3.4. Validation

The present grid generation procedure was validated in an earlier paper (Yang et al.
2003; see also Yang & Prosperetti 2006). The Navier–Stokes algorithm for the base
flow is a simplified form of that developed and validated for a deforming bubble by
Yang & Prosperetti (2006).

The problem of the flow past a spheroid with a fixed shape and free-slip conditions
has been studied numerically by Dandy & Leal (1986) and Blanco & Magnaudet
(1995). The first paper is limited to a maximum Reynolds number of 250 whereas, in
the second one, only results up to a maximum aspect ratio of 2.0 are reported.

Table 1 shows a comparison of our computed drag coefficient with the values
reported by Blanco & Magnaudet (1995) and others for a free-slip sphere (χ = 1.0)
and spheroids, and for a solid sphere. The agreement is satisfactory.

4. Unperturbed flow
We present detailed results for Re =660, which is close to the case discussed by

Duineveld (1995). In water, this corresponds to a bubble with an equivalent spherical
diameter of about 1.8 mm. The shape of this bubble is closely approximated by a
spheroid with semi-axes a and b and an aspect ratio χ = b/a = 1.85. In order to gain
an insight into the effect of the deformation, we keep Re fixed at 660 and vary the
aspect ratio between 2.0 and 2.5.

The total dimensionless hydrodynamic force, which we refer to, for simplicity, as
the drag coefficient, is defined as CD = FD/(πb2ρU 2

∞/2), where FD is the dimensional
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Figure 2. Evolution of drag coefficient versus time for axisymmetric flow past a spheroidal
bubble of fixed shape for Re= 660. The states marked as A, B , C, D, E and F are used as
base states for the linear stability calculation. (a) Total drag. (b) Viscous drag. (c) Pressure
drag.

hydrodynamic force and ρ the liquid density. This quantity is shown as a function of
time in figure 2(a) for different aspect ratios. The pressure, CDP , and viscous, CDV ,
components of CD are shown similarly in figures 2(b) and 2(c). The stability analysis
reported in the next section will be based on the solutions corresponding to the points
marked as A, B , C, D, E and F in these figures.

As the aspect ratio increases, the most significant change in the flow is the increased
vorticity generation, proportional to the product of velocity and local curvature,
which increases as χ8/3 (Mougin & Magnaudet 2002). Figure 2(a) shows that this
circumstance leads to a slower and slower approach to steady state as χ increases.

Figure 3 shows velocity fields and contour plots of vorticity for the states A, B , C,
D, E and F of figure 2 corresponding to χ = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5, respectively.
The upper half of each figure shows the velocity field and the lower half contour
plots of the vorticity. A standing eddy attached to the rear of the bubble appears in
all cases.
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y o pheroidal bubble
(a) χ = 2.0

(c) χ = 2.2

(e) χ = 2.4
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Figure 3. Velocity fields (upper half) and vorticity contour plots (lower half) for axisymmetric
flow past a spheroidal bubble of fixed shape at Reynolds number Re =660. For each aspect
ratio, 50 equally spaced vorticity contours are shown.

Starting the calculation with an already fixed velocity, as we do, leads to a strong
vorticity generation during the initial stages. As the flow develops, the boundary
layer thickens, the flow separates, and the rate of vorticity generation decreases. The
initial vorticity accumulates in the recirculating wake for a while, during which time
it develops non-trivial structures with one or more extremal points. Eventually, it
diffuses out of the eddy and is convected downstream. This is a slow process during
which the total drag coefficient changes little although the viscous contribution to
it (figure 2b) is still undergoing minor adjustments. On the basis of some tests
done at different instants during this late period of adjustment of the flow, we
do not expect our conclusions to be significantly affected by this residual slight
unsteadiness.
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5. Linear stability analysis
In order to characterize the evolution of perturbations we consider the disturbance

kinetic energy K

K =
1

2

∑ (
u2

ξ + u2
η + u2

ϕ

)
, (5.1)

where the summation is taken over all the nodes of the computational domain. The
amplification factor G of K is defined as

G =
K(tn+1)

K(tn)
. (5.2)

For an initial-value problem such as the one we discuss, the perturbation fields will be
given by the superposition of eigenmodes with an exponential time dependence (other
than in the exceptional case of degenerate eigenvalues). For a regular bifurcation, the
leading eigenvalue, λ say, is real and therefore, as time increases,

G → exp 2λ�t (5.3)

where �t = tn+1 − tn is the time step. With this relation, λ can be readily determined
from the asymptotic value of G. For a Hopf bifurcation, the leading eigenvalue is
complex and

G → exp[2Re(λ)�t] cos[2Im(λ)�t + β], (5.4)

where β is a phase. If the leading eigenvalue λ1 is real and the next one complex,
λ2 = λr

2 + iλi
2, the approach to the asymptotic regime (5.3) will be oscillatory:

G �
1 + A exp

[
−2

(
λ1 − λr

2

)
tn+1

]
cos

(
λi

2t
n+1 + β

)
1 + A exp

[
−2

(
λ1 − λr

2

)
tn

]
cos

(
λi

2t
n + β

) exp(2λ1�t), (5.5)

where A is an amplitude and β a phase. The stability features of the system will be
evident by analysing the behaviour of K and G.

We studied the stability of the m =0 mode, which probes the steadiness of the base
flow. The numerical results show that perturbations either decay for small aspect
ratio (χ = 2.0), or exhibit a growth rate very much smaller than that found for the
unstable modes. The most unstable mode corresponds to m =1 and these results will
be presented first, followed by some results for the mode m = 2.

5.1. m =1 mode

In considering the results that we now show for the m =1 mode, we should keep
in mind that, for this mode, corresponding values of any perturbation quantity on
opposite sides of the symmetry axis are negatives of each other.

5.1.1. m =1 mode – Leading eigenvalue

Figure 4(a) shows the time history of the perturbation kinetic energy K for χ = 2.0,
2.1, 2.2, 2.3, 2.4 and 2.5 at Re= 660 associated with the m = 1 mode in log–linear
coordinates. Figure 4(b) shows the corresponding amplification factor G. Clearly K

decays for χ = 2.0, whereas it grows very slowly for χ = 2.1 and faster and faster for
larger values. The amplification factor G approaches a constant, which indicates a
regular bifurcation, and increases with χ . These results show that, for this value of the
Reynolds number, the stability threshold in χ is close to 2.1, which is somewhat lower
than that of Magnaudet & Mougin (2007) who estimate the threshold at χ � 2.2. We
are unable to explain this discrepancy. One possibility is the different nature of the
two studies, a linear analysis (ours) vs. a nonlinear one. A threshold with χ = 2.2 has
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Figure 4. Time evolution of (a) the disturbance kinetic energy K in log–linear coordinates
and (b) the amplification factor G of the linear stability calculations for m= 1 with Re= 660.
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Figure 5. The first (real) eigenvalue of the m= 1 mode calculated from the amplification
factor G at Re =660 as a function of the aspect ratio. The straight line is a linear fit.

also been observed in the experiment of Shew et al. (2006), although for Re =730. In
any case, this difference does not affect qualitatively our conclusions and, especially,
the arguments of § 7.

The eigenvalues for different values of χ can be calculated from the asymptotic
values of G according to (5.3) with the result shown in figure 5. The straight line is a
least-squares linear fit, λ1 = 0.454χ − 0.948 which crosses 0 for χ � 2.09.

Figure 6 shows the three perturbation vorticity components for χ = 2.2. Figure 6(a)
shows the presence of streamwise vorticity localized near the axis. Owing to the
proportionality to exp(iϕ), this quantity will have an opposite sign on opposite sides
of the axis and will therefore generate a two-threaded wake structure. This axial
vorticity becomes significant only at some distance behind the bubble, which would
correspondingly delay the appearance of the two-threaded wake as noted by Ghidersa
& Dus̆ek (2000) for a solid sphere. Figure 6(b) shows isovorticity lines nearly parallel
to the axis downstream of the bubble with a smooth radial variation from negative
to positive and then to zero. Inside the recirculating region near the bubble, however,
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Figure 6. Contour plots of the disturbance vorticity components (a) ωz, (b) ωϕ and (c) ωr

for χ = 2.2 and Re= 660 for the m= 1 mode.
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Figure 7. Isosurfaces of the streamwise vorticity ωz/ωmax = ±0.001 for the m= 1 mode with
Re =660, χ = 2.3; ωmax is the maximum modulus of the streamwise vorticity. The two views
differ by 90◦.

two vortex structures with opposite signs form. Again owing to the proportionality
to exp(iϕ), very near the axis the vorticity is decreased on the right-hand side (shown
in the figure, with a minimum value −0.546), but correspondingly enhanced on the
left-hand side; as noted before, this feature may be regarded approximately as a
translation of the symmetric wake of the base flow.

A view of a typical two-threaded wake (for χ = 2.3) is shown in figure 7 in terms
of streamwise iso-vorticity surfaces. The two views differ by 90◦, with dark and light
shading representing values of streamwise vorticity with the same magnitude but
opposite sign. Qualitatively similar results are found for all the other unstable values
of χ . The wake depicted here has the characteristic structure found in experiment
(Brücker 1999; de Vries et al. 2002) and calculation (Mougin & Magnaudet 2002) for
bubbles as well as solid spheres (Johnson & Patel 1999; Tomboulides & Orszag 2000).
The vector sum of the vorticity components in the ϕ- and z-directions provides a tilt
of the vortex lines as remarked by Thompson et al. (2001) for a solid sphere. The
small regions with a vorticity of the opposite sign near the bubble are also present in
the case of a solid sphere (Tomboulides & Orszag 2000).
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(a)

(b)

Figure 8. Streamlines and velocity vector field for the mode m= 1 with Re= 660, χ =2.3 as
seen from ϕ = −π/2; (a) perturbation, (b) total flow formed by adding 50% of the perturbation
to the base flow.

Figure 8(a) shows the perturbation streamlines and velocity vector field in the half-
planes ϕ = 0 and ϕ = π, whereas figure 8(b) gives an impression of the streamlines
and velocity field for the total flow obtained by adding to the base flow 50% of
the perturbation fields. The flow structure in figure 8(b) is similar to that found by
Johnson & Patel (1999) in their fully three-dimensional nonlinear simulation of the
flow past a fixed solid sphere after the first bifurcation. This conclusion agrees with
the point made by Ghidersa & Dus̆ek (2000) in connection with the flow past a solid
sphere, where the m =1 mode seems sufficient to capture the essence of the flow. The
figure also shows evidence of the spiralling motion of fluid particles on a roughly
toroidal trajectory normal to the incident flow shown in figure 12 of Johnson & Patel.

The surface streamlines of the perturbation and of the total flow as observed
from the ϕ = 0 direction are shown in figures 9(a) and 9(b), respectively, in two
views from 60◦ above (left) and 60◦ below (right) the equatorial plane of the bubble.
The streamlines of the perturbed flow are formed by arbitrarily adding 25% of the
perturbation to the base flow. On the lower side, the perturbation streamlines come
together at the roots of the streamwise vortices shown in figure 7, which is also evident
in the lower view of the total flow.
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(a)

(b)

Figure 9. Surface streamlines for the mode m= 1 with Re= 660, χ = 2.3 observed from the
ϕ = 0 direction from 60◦ above (left) and 60◦ below (right) the bubble; (a) perturbation
(b) total formed by adding 25% of the perturbation to the base flow.

Figure 10 shows the perturbation surface vorticity components in the angular
direction (ωϕ), in the direction normal to the surface (ωn), and in a tangential
direction along the ‘meridians’ (ωτ ) as they appear along the line ϕ = π/2. The
perturbation vorticity is very small from the front stagnation point to the separation
line, as may be expected from the stretching of the vortex lines in this region. When
flow convergence accelerates downstream of the separation line, ωϕ rapidly grows
in magnitude, followed by ωn and ωτ . The angular component of this disturbance
vorticity has a strong extremum in the vicinity of the maximum vorticity of the base
flow, which indicates a tendency to tilt this ‘belt’ of maximum vorticity.

Figure 11 shows contour plots of the radial ur , streamwise uz, and azimuthal uϕ

velocity perturbations associated with the m = 1 mode for χ = 2.3. These results are
similar to those for the linearized disturbance flow past a solid sphere given in
Natarajan & Acrivos (1993) and, for the fully nonlinear problem, in Tomboulides &
Orszag (2000).

5.1.2. m =1 mode – second eigenvalue

The oscillations of the amplification factors G in figure 4(b) before saturation
indicate that the second eigenvalue is complex. As the aspect ratio χ is increased,
one would expect this eigenvalue to cross the imaginary axis. A similar behaviour
is encountered in the case of a solid sphere as the Reynolds number is increased
(Natarajan & Acrivos 1993; Johnson & Patel 1999; Tomboulides & Orszag 2000).

Following Tomboulides & Orszag (2000), in order to calculate this second eigenvalue
we focus on the time evolution of uϕ (which vanishes at t = 0) at an arbitrary point
behind the bubble. By fitting a function of the form A(exp (λ1t) − 1) to the large-time
numerical results, we find an estimate of the amplitude A of the dominant mode.
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Figure 10. Disturbance vorticity components – – –, ωτ ; —, ωn; �, ωϕ at the bubble surface
for the m= 1 mode with Re= 660, χ = 2.3; θ is the angle measured from the front stagnation
point. ωτ and ωϕ are the tangential components, and ωn is the normal component. Quantities
are normalized by the maximum of |ωϕ |.
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Figure 11. Contour plots of the disturbance velocities ur, uz, uϕ for χ = 2.3 and Re= 660 for
the m= 1 mode. Ten equally spaced contours are drawn.

The term A(exp (λ1t) − 1) is then subtracted from uϕ(t) and the remainder fitted
by an exponential multiplied by a sinusoidal function. In this way, the real and
imaginary parts of the second eigenvalue λ2 can be calculated. The accuracy of this
procedure is demonstrated for the case χ = 2.5 in figure 12(a) which clearly shows
the coexistence of the first, regular, and the second, Hopf, eigenmodes. The second
eigenvalue calculated in this way is shown in the complex plane in figure 12(b) for
different values of χ .

The eigenfunctions for the second oscillatory mode can also be extracted after
subtraction of the leading mode. In figure 13, a series of contour plots of the stream-
wise λ2 perturbation vorticity is shown at five different instants of time between t = 30
and t = 44.4 covering approximately one period of oscillations, approximately equal
to 15.
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Figure 12. (a) Illustration of the least-squares fitting procedure to estimate the second
eigenvalue. The quantity shown is uϕ at r ≈ 1.5 and z ≈ −1.8 for Re= 660 and χ =2.5. The
straight lines represent a fit of the leading mode of the form A(exp (λ1t) − 1). The oscillating
curves show the fit for the second mode after subtraction of the first mode by a function of
the form B exp[Re(λ2)t] cos[Im(λ2)t + β]. (b) Eigenvalues of the second mode obtained by this
procedure.

t = 30.0 33.6 37.2 40.8 44.4

Figure 13. A sequence of contour plots of the disturbance vorticity ωϕ in approximately one
period for the second (oscillatory) mode of m= 1 at Re= 660 and χ = 2.3. In each frame, the
normalization is according to the maximum magnitude of the perturbation vorticity.

A view of the perturbation vorticity eigenfunction at t = 44.4, similar to that of
figure 7, is given in figure 14 where the isosurfaces of the streamwise vorticity
ωz/ωmax = ±0.001 (with ωmax the maximum value) are plotted. By considering the
sum of the eigenfunctions corresponding to λ2 and its complex conjugate, it is found
that the sign of the vorticity perturbation would oscillate with the frequency Im λ2/2π
maintaining a plane of symmetry. This wake structure is similar to that in figure 14
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(a) (b)

Figure 14. Two orthogonal views of the isosurfaces of the streamwise vorticity ωz/ωmax =
±0.001 (with ωmax the maximum modulus) for Re= 660 and χ = 2.3 for the second eigen-
function of m= 1.

χ Re λ1 Re (λ2) Im (λ2)

2.0 660 <0
2.1 660 ≈0.0001 <0
2.2 330 0.0485 <0
2.2 660 0.0571 <0
2.3 200 0.0694 <0
2.3 330 0.0859 <0
2.3 400 0.0972 <0
2.3 660 0.0920 ≈−0.005 0.306
2.4 660 0.147 0.0406 0.376
2.5 150 <0 <0 0.304
2.5 175 0.0271 −0.0139 0.336
2.5 200 0.0625 0.0181 0.342
2.5 330 0.152 0.0771 0.398
2.5 660 0.182 0.0995 0.405

Table 2. The first two eigenvalues of the m= 1 mode for different Reynolds numbers Re
and aspect ratios χ .

of Brücker (1999) for the wake of a solid sphere and is related to the formation
and periodic shedding of opposite-signed hairpin vortices (Johnson & Patel 1999;
Tomboulides & Orszag 2000).

5.1.3. Exploring Re–χ parameter space

Table 2 summarizes the first two eigenvalues for the m = 1 mode at different
Reynolds numbers and aspect ratios. It is evident that stability is a sensitive function
of the aspect ratio, whereas it depends relatively weakly on the Reynolds number.
For the same Re, λ1 increases with increasing aspect ratio while, for fixed χ , the
behaviour is more complex as, in some cases (e.g. passing from Re = 400 to 660 for
χ = 2.3), it decreases with increasing Re. This behaviour is in keeping with the results
of figure 7 of Magnaudet & Mougin (2007) which indicates that, for this value of χ ,
the instability growth rate has a maximum around Re= 500. Blanco & Magnaudet
(1995) suggested that this result follows from the non-monotonic behaviour with Re
of the size of the attached recirculating eddy behind the bubble.

It may be recalled that, for a disk (χ → ∞) and a solid sphere (χ = 1), the first
bifurcation sets in for Re =116.5 and 210, respectively. Our results for a χ = 2.5
spheroidal bubble indicate the onset of the first instability between Re= 150 and 175.
For the same χ = 2.5, Magnaudet & Mougin (2007) find a slightly higher threshold
below about Re =180. Also note that, for different Reynolds numbers, Im λ2 takes
on similar values close to the second instability onset. The corresponding Strouhal
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Figure 15. Time evolution of (a) the disturbance kinetic energy K in log–linear coordinates
and (b) the amplification factor G for m= 2 with Re =660.

numbers, St = 2(Im λ2)/(2π) are close to 0.1. According to Natarajan & Acrivos
(1993), for a solid sphere at onset, St = 0.113. For χ = 2.5 and Re = 330, our Strouhal
number is about 0.13, close to the value found by Magnaudet & Mougin (2007). Our
result for Re =660 is somewhat lower than theirs. On the other hand, it is known (see
e.g. Pier & Huerre 2001) that linear and nonlinear Strouhal numbers can be rather
different, and nonlinear effects may be expected to be much stronger farther away
from the threshold.

These values of the Strouhal number are generally consistent with those observed
(Mougin & Magnaudet 2002; Shew et al. 2006) although the extent to which results
for a fixed bubble are applicable to a moving bubble is unclear.

5.2. m =2 mode

Figure 15(a) shows the time history of the disturbance kinetic energy in log–linear
coordinates for χ =2.3, 2.4 and 2.5 at Re = 660 for the m =2 mode, and figure 15(b)
shows the corresponding amplification factors. K grows exponentially for χ = 2.5
whereas it decays for the smaller values of χ . The oscillatory time dependence of
G for χ = 2.5 indicates that the eigenmode is oscillatory, corresponding to a Hopf
bifurcation.

The time trace of uϕ at r ≈ 1.5 and z ≈ −1.8 is shown in figure 16. Clearly uϕ oscil-
lates, with the oscillation amplitude decaying for χ =2.3 and 2.4, and growing for
χ =2.5. To separate the real and imaginary parts of the eigenvalue, we assume a
functional form D exp[Re(λ(2))t] cos[Im(λ(2))t +β], where D and β are local constants.
As figure 17(a) shows, a good fit can be obtained in this way. The eigenvalue for
χ =2.5 is estimated to be λ(2) � 0.0349 + i0.476, while that for χ = 2.4 is estimated to
be λ(2) � −0.0430 + i0.396.

Two views of the ωz/ωmax = ±0.001 streamwise vorticity isosurfaces rotated by 45◦

from each other are shown in figure 18 at t = 54.0. Other than for the larger number
of ‘leaves’ in the angular direction (4 in place of 2), the structure is similar to that
encountered before for the second eigenvalue of the m =1 mode.

6. ‘Frozen-state’ linear stability calculation
In order to demonstrate the role of the wake development on the instability studied

in this paper, it is useful to carry out a ‘frozen-state’ stability analysis. Here, instead
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Figure 16. Time evolution of uϕ at r � 1.5 and z � −1.8 for m= 2 and Re= 660.
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Figure 17. (a) An example of the least-squares fitting for uϕ at r ≈ 1.5 and z � −1.8 with

Re= 660 and χ =2.5 for m= 2 according to D exp[Re(λ(2))t] cos[Im(λ(2))t + β]. (b) The real
and imaginary part of the first eigenvalue for the m= 2 mode at Re= 660.
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Figure 18. Two views rotated by 45◦ of the isosurfaces of the streamwise vorticity ωz/ωmax =
±0.001 (with ωmax the maximum modulus) for Re= 660 and χ = 2.5 for the leading eigenvalue
of the m= 2 mode.
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Figure 19. Contour plots of vorticity for the axisymmetric flows past a spheroidal bubble of
fixed shape at different times with Re = 660 and χ = 2.3. At each instant, 40 equally spaced
vorticity contours are shown.
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Figure 20. Time evolution of (a) the disturbance kinetic energy K in log–linear coordinates
and (b) the amplification factor G of the linear ‘frozen’ state stability calculations for m= 1
with Re= 660 and χ = 2.3.

of the steady base flow, we study the stability of ‘frozen’ snapshots of the evolving
unperturbed flow. This procedure is clearly heuristic, but can be justified, first, by
noting that the m =0 mode (which would evidently be unstable until the steady state
is reached) is separated out in our linearized procedure and, secondly, that for a
regular bifurcation, the shape of the unstable eigenfunctions does not change with
time so that it would develop in a relatively short time interval during which the still
evolving base flow changes little.

We choose the case Re= 660 and χ = 2.3 for this analysis. Figure 19 shows a series
of contour plots of the base flow vorticity at times t = 0.0036, 2.4, 4.8, 7.2, 9.6 and
32.4. The last image corresponds to the point D in figure 2 and is the essentially
steady base flow studied before. These contour plots show the evolution of the
vortical region behind the bubble which increases with time until generation and
convection/dissipation balance.

Figure 20(a) shows the time evolution of the disturbance kinetic energy K for
the m =1 mode in correspondence with these ‘frozen’ states, and figure 20(b) shows
the corresponding amplification factors G. Initially, for t = 0.0036 and 2.4, K decays
and G remains less than 1, corresponding to a stable situation. For t � 4.8, both
quantities show the onset of a regular non-oscillatory instability. The growth rate of
the perturbations increases with time between 4.8 and 7.2, but is smaller at 9.2 and
even smaller at steady state t = 32.4.
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We believe that this non-monotonic variation of the growth rate is a consequence
of the fact, already noted at the end of § 4, that our starting conditions inject a
large amount of vorticity into the attached eddy. As long as this vorticity is still in
the near wake, it contributes to the destabilization of the flow, which explains the
gradual decrease of the instability growth rate as steady conditions are approached.
That the flow is still stable at early times, even though this large amount of vorticity
is presumably already present in the wake, suggests that the wake volume must be
large enough for the instability to set in.

7. Discussion
In their study of the flow past a solid sphere, Johnson & Patel (1999) state that

‘the instability of the axisymmetric flow is connected to the generation by radial
acceleration around the vortex centre of a ring of low pressure in the wake’ (p. 36).
Below Re =200, ‘the centrifugal force of the vortex rotation must be balanced by
viscous forces as opposed to a radial pressure gradient’ (p. 28). By simulating the
flow past a solid no-slip sphere, we have confirmed the appearance of these local
pressure minima at Re= 200, i.e. below the first bifurcation at Re = 210. We found
the same structures in the simulation of free-slip spheroids where, at Re = 660, a
clear pressure minimum already occurs for χ = 2.0 and, in general, well below the
instability threshold also for other Reynolds numbers. Thus, the occurrence of a
pressure minimum may well be a factor but, by itself, it appears to be insufficient to
account for the instability.

Magnaudet & Mougin (2007) analayse the equation for the base-flow vorticity ωφ

which, in our notation, is

Ur
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∂r
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[
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(
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)
+

∂2Ωφ

∂z2

]
. (7.1)

They argue that, as the aspect ratio increases, there is a region near the rear of
the bubble in which the iso-Ωφ lines gradually tilt normally to the z-axis until a
portion of them nearly coincides with constant z-lines. In this region, ∂Ωφ/∂r � 0 and
the equation is satisfied by an approximate balance of (Uz∂Ωφ/∂z − UrΩφ/r) and
ν∂2Ωφ/∂z2, which requires a stronger and stronger vorticity variation in the streamwise
direction as the Reynolds number is increased. On this basis, they hypothesize that
a sufficient criterion for the onset of the instability is the appearance of a line (or
a region) where ∂Ωφ/∂r = 0. ‘Existence of this region is specific to axisymmetric
flows and results from the combination of the Prandtl–Batchelor constraint within
the standing eddy and the condition of weak vorticity on the rear part of the body
surface’ (Magnaudet 2006). The argument developed by Magnaudet is compelling,
although it does not quite explain the actual mechanism of the instability.

Vortex rings are known to be subject to a variety of instabilities (see e.g. Widnall &
Sullivan 1973; Tsai & Widnall 1976; Maxworthy 1977; Saffman 1978; Dritschel
1988; Kopiev & Chernyshev 1997). This possibility is mentioned, among others, by
Thompson et al. (2001) in their study of sphere wake transition. Via the Biot-Savart
induced velocity field, a rearrangement of the vorticity in the wake would perturb
the ambient flow in which the bubble finds itself immersed. A consequence of this
disturbance of the flow incident on the bubble would be a spatial redistribution of the
vorticity generation, which could be such as to reinforce the perturbation. In order for
this to happen, it is not even necessary that the vorticity distribution become unstable
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Figure 21. Growth rate of a quasi-irrotational perturbation (see text) with m= 1 (solid line)
compared with that of the regular vortical one for χ = 2.5 and Re =660.

itself. One of the various oscillation modes that can be supported by vortices (see e.g.
Kopiev & Chernyshev 1997) would be sufficient to disturb the axial symmetry.

A trigger for a process of this type could be the surface vorticity shown in figure
10. The convergence of the undisturbed streamlines as the flow approaches the rear
stagnation point of the bubble has the effect of amplifying any disturbance affecting
the vorticity of the base flow. This disturbed vorticity, which acts as a boundary
condition for the disturbance vorticity equation, would have a strong effect on the
vorticity distribution behind the sphere and might destabilize it.

In the hope of gaining some further understanding of the phenomenon, we have
carried out some stability simulations trying to minimize the perturbation vorticity by
setting the viscosity to zero and replacing the free-slip condition on the bubble surface
by a condition of irrotationality. Unfortunately, this procedure does not completely
eliminate the perturbation vorticity as the term (ω · ∇)u in the vorticity equation
will act as a source of perturbation vorticity. We found that the (properly scaled)
magnitude of the perturbation vorticity in the region of the base flow attached vortex
is comparable in the two calculations. A result of this analysis, however, is that the
growth rate of the instability is increased with respect to the viscous case (see figure 21
for an example). This feature is characteristic of instabilities rooted in inertial effects.

As for the second mode m =1 bifurcation, its oscillatory nature points to a standard
shear-flow instability encountered, for example, in the analysis of the stability of the
flow past a cylinder in two dimensions (Yang & Zebib 1989).

8. Conclusions
In order to shed light on the origin of the path instability of a rising gas bubble

in a liquid, we have studied the linear stability of the axisymmetric flow past a
fixed spheroid with free-slip boundary conditions and different aspect ratios χ and
Reynolds numbers Re. The first instability corresponds to the mode m =1. For a
fixed moderate Reynolds number, a gradual increase of χ causes first a regular
bifurcation to a steady flow with a fixed plane of symmetry and a double-threaded
wake, followed by a second Hopf bifurcation. A similar sequence is found for a fixed
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χ and increasing Re (table 2). At larger Reynolds numbers or aspect ratios, the mode
m =2 also becomes unstable.

According to the experiments of Duineveld (1995), an air bubble rising in hyperclean
water starts zigzagging at an equivalent radius of 0.91 mm, with an aspect ratio of
about 1.85 and a Reynolds number of 662. Our result for the threshold at this
Reynolds number is approximately χ = 2.1 which, according to Duineveld’s figure 3,
would correspond to an equivalent radius of 0.99 mm. Because a real gas bubble does
not quite have a spheroidal shape, rises freely rather than being constrained as in
our simulation, and might exhibit shape oscillations, the agreement appears to be
satisfactory.

The first bifurcation to a steady plane-symmetric flow, with its two-threaded wake,
can explain the appearance of a lift force perpendicular to the original axis of
symmetry. The Hopf bifurcation that takes place with a larger χ or Reynolds number
modulates the lift force produced by the first bifurcation. The bifurcation sequence
in the present axisymmetric flow is therefore qualitatively different from that of two-
dimensional flows in that transition to unsteady flow is not the result of the first
bifurcation.

Qualitatively, our results resemble those found for the flow past a solid sphere in
spite of the different boundary conditions on the body surface, whose effect appears
essentially to move the instability onset to larger Reynolds numbers. As pointed out
by Leal (1989), this feature is probably related to the different strength of vorticity
generation at the bubble surface. The role of vorticity is highlighted by our stability
study of the base flow ‘frozen’ at different instants before becoming steady. We have
found that, initially and for some time after the start of the simulation, the flow is
stable. Only when enough vorticity has accumulated in the wake and has reached a
suitable spatial distribution, these ‘frozen states’ start becoming unstable.

By setting viscosity to zero in the perturbation equations, we finds that the growth
rate of the primary instability increases, which suggests that the instability is rooted
in inertial effects.

A. P. is pleased to acknowledge many fruitful discussions with A. Biesheuvel, D.
Lohse, J. Magnaudet and L. van Wijngaarden. The comments of J. Magnaudet have
been especially valuable. Thanks are also due to D. G. Dritschel, W. L. Shew, and C.
Veldhuis.

This study has been supported by NASA under grant NNC05GA47G.

REFERENCES

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209–221.

Aybers, N. M. & Tapucu, A. 1969a The motion of gas bubbles rising through stagnant liquid.
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Brücker, C. 1999 Structure and dynamics of the wake of bubbles and its relevance to bubble
interaction. Phys. Fluids 11, 1781–1796.



Stability of the flow past a spheroidal bubble 77

Clift, R., Grace, J. & Weber, M. 1978 Bubbles, Drops, and Particles . Academic.

Dandy, D. S. & Leal, L. G. 1986 Boundary layer separation from a smooth slip surface. Phys.
Fluids 29, 1360–1366.

Dritschel, D. G. 1988 Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular
flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows.
J. Fluid Mech. 191, 575–581.

Duineveld, P. 1995 The rise velocity and shape of bubbles in pure water at high Reynolds number.
J. Fluid Mech. 292, 325–332.

Duraiswami, R. & Prosperetti, A. 1992 Orthogonal mapping in two dimensions. J. Comput. Phys.
98, 254–268.

Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and
liquid-induced velocity. J. Fluid Mech. 440, 235–268.

Ghidersa, B. & Dus̆ek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of
a sphere. J. Fluid Mech. 423, 33–69.

Goldburg, A. & Florsheim, B. H. 1966 Transition and Strouhal number for the incompressible
wake of various bodies. Phys. Fluids 9, 45–50.

Hartunian, R. & Sears, W. 1957 On the stability of small gas bubbles moving uniformly in various
liquids. J. Fluid Mech. 3, 27–47.

Jenny, M., Dus̆ek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending
freely in a Newtonian fluid. J. Fluid Mech. 508, 201–239.

Johnson, T. & Patel, V. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech.
378, 19–70.

Kopiev, V. F. & Chernyshev, S. A. 1997 Vortex ring eigen-oscillations as a source of sound.
J. Fluid Mech. 341, 19–57.

Leal, L. G. 1989 Velocity transport and wake structure for bluff bodies at finite Reynolds number.
Phys. Fludis A 1, 124–131.

Lunde, K. & Perkins, R. J. 1997 Observations on wakes behind spheroidal bubbles and particles.
In ASME Fluids Engineering Division Summer Meeting , paper 3530.

Lunde, K. & Perkins, R. 1998 Shape oscillations of rising bubbles. Appl. Sci. Res. 58, 387–408.

Magarvey, R. H. & Bishop, R. L. 1961 Transition ranges for 3-dimensional wakes. Can. J. Phys.
39, 1418–1422.

Magnaudet, J. 2006 A physical mechanism for the primary instability of axisymmetric wakes past
bluff bodies. Bull. Am. Phys. Soc. 51 (9), 128–129.

Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous
flows. Annu. Rev. Fluid Mech. 32, 659–708.

Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech.
572, 311–338.

Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flow past a rigid sphere or a spherical
bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135.

Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81, 465–495.

Meiron, D. 1989 On the stability of gas bubbles rising in an inviscid fluid. J. Fluid Mech. 198,
101–114.

Moore, D. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid
Mech. 23, 749–766.

Mougin, G. & Magnaudet, J. 2002 Path instability of a rising bubble. Phys. Rev. Lett 88, 014502/1.

Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks.
J. Fluid Mech. 254, 323–344.

Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev.
Lett. 83, 80–83.

Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing
wake flows. J. Fluid Mech. 435, 145–174.

Prosperetti, A. 2004 Bubbles. Phys. Fluids 16, 1852–1865.

Ryskin, G. & Leal, L. 1983 Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254–268.

Ryskin, G. & Leal, L. 1984 Numerical solution of free-boundary problems in fluid mechanics.
Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech.
148, 19–35.



78 B. Yang and A. Prosperetti

Saffman, P. G. 1956 On the rise of small air bubbles in water. J. Fluid Mech. 1, 249–275.

Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625–639.

el Sawi, M. 1974 Distorted gas bubbles at large Reynolds number. J. Fluid Mech. 62, 163–183.

Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys.
Fluids 14, 3846–3854.

Shew, W. L., Poncet, S. & Pinton, J.-F. 2006 Force measurements on rising bubbles. J. Fluid Mech.
569, 51–60.

Takagi, S., Matsumoto, Y. & Huang, H. 1997 Numerical analysis of a single rising bubble using
boundary-fitted coordinate system. JSME Intl J. B 40, 42–50.

Thompson, M. C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake
transition. J. Fluids Struct. 15, 575–585.

Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak
turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.

Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a
weakly externally imposed shear. J. Fluid Mech. 73, 721–733.

Veldhuis, C., Biesheuvel, A., van Wijngaarden, L. & Lohse, D. 2005 Motion and wake structure
of spherical particles. Nonlinearity 18, C1–C8.

de Vries, A., Biesheuvel, A. & van Wijngarden, L. 2002 Notes on the path and wake of a gas
bubble rising in pure water. Intl J. Multiphase Flow 28, 1823–1835.

Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332,
335–353.

Yang, B. & Prosperetti, A. 2006 A second-order boundary-fitted projection method for free-surface
flow computations. J. Comput. Phys. 213, 574–590.

Yang, B., Prosperetti, A. & Takagi, S. 2003 The transient rise of a bubble subject to shape or
volume changes. Phys. Fluids 15, 2640–2648.

Yang, X. & Zebib, A. 1989 Absolute and convective instability of a cylinder wake. Phys. Fluids A
1, 689–696.


